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Frictional and dissipative terms of the Schr6dinger equation are studied. 
A proof is given showing that the frictional term of the Schr6dinger- 
Langevin equation causes the quantum system to lose energy. General 
expressions are derived for the frictional term of the Schr/Sdinger equation. 
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1. I N T R O D U C T I O N  

In classical mechanics ,  the fundamen ta l  equat ions  o f  mot ion  may  be taken to 
be Newton ' s  laws. In quan tum mechanics ,  the fundamen ta l  equat ion  may  
be taken to be the Schr6dinger  equat ion,  

ih ~b/~t = - (h=/2m)  V2~b + V(r)~b(r, t)  (1) 

I t  is well known tha t  Newton ' s  equa t ions  can be der ived f rom the Schr6-  
d inger  equat ion  : 

d ( p ) / d t  = ( F )  (2) 

m d ( r ) / d t  = ( p )  (3) 
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where the expectation value of the force is equal to the negative of the ex- 
pectation value of the gradient of the potential 

~F} = - (V V) (4) 

One of the basic equations of classical mechanics in which frictional 
forces are present is Langevin's equation. Expressed in terms of expectation 
values, this equation has the form 

d(p ) /d t  = - Y ( P )  + {F} + (Vs) (5) 

where 7 is the friction constant and F8 is a stochastic force. It has been shown 
that the Schr6dinger-Langevin equation (1) 

ih e~/3t = - (h2 /2m)  V2~ + V,b + V~b + (h7/2i) ln(6/~b*)~b (6) 

entails the Langevin equation (5), the momentum condition (3), and the 
normalization condition 

d(~b, $)/dt = 0 (7) 

The stochastic force F, is the negative of the gradient of the stochastic 
potential Vs. 

The frictional force of the Langevin equation is proportional to the 
negative of the momentum. However, studies of the slowing down of elec- 
trons, protons, and other atomic particles under a wide variety of conditions 
have shown that the friction force has many different functional dependences 
on momentum. (2) The energy dissipation operator K(~b) of the Schr6dinger 
equation 

ih O~/Ot = H~h + Vs~b + K(~b) (S) 

causes the slowing down of the particle. All possible wave functions of the 
Schr6dinger equation (8) should satisfy the normalization condition 

the momentum condition 

d(~b, ~b)/dt = 0 (9) 

(~b, p~b) = m d(~b, r~b)/dt (lO) 

and the energy dissipation condition, namely that K(~b) causes the quantum 
system to lose energy. In the phenomenological approach one asks what 
forms of K(~b) satisfy the normalization, momentum, and energy dissipation 
conditions. Previous attempts from the phenomenological point of view to 
answer this question have not been entirely successful. (3-6> It is the purpose of 
this paper to derive general forms of K(~b) which satisfy the normalization, 
momentum, and energy dissipation conditions. 
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2. D I S S I P A T I O N  OF E N E R G Y  

The change in the energy of a quantum system as a result of its inter- 
action with a surrounding dissipating system is 

( E ( t ) )  - (E(O))  = [r He(t)] - [r H~b(0)] (1 l) 

For an infinitesimal time of interaction, expression (1 l) becomes 

d ( E ) / d t  = (r H ~r + (~r H~b) (12) 

If  the stochastic potential Vs is neglected, then the energy of the quantum 
system will either remain the same or decrease: 

d ( E ) / d t  <. 0 (13) 

The special case where d ( E ) / d t  = 0 will be discussed later in this section. 
Substituting (8) into (12), neglecting V~, and using the fact that the operator 
H is Hermitian, we obtain 

d<E>/dt = (1/ih){[r HK(r - [K(r Hr ~< 0 (14) 

Thus the energy dissipation operator K must satisfy the energy dissipation 
condition (14) for all possible wave functions ~b. 

The energy dissipation operator K must also be such that all possibie 
wave functions of the SchrSdinger equation satisfy the normalization condi- 
tion (9). Substituting (8) into (9) gives us 

[r K(r = [K(r 4,1 (15) 

Thus the energy dissipation operator K must satisfy the normalization condi- 
tion (15) for all possible wave functions. 

In addition, the momentum condition (10) must hold. Combining (8) and 
(10) yields 

[~b, rK(r = [K(r re] (16) 

Condition (16), derived from the momentum condition (10), must be valid for 
all possible wave functions r 

An example of an energy dissipation operator which satisfies the energy 
dissipation condition (14), the normalization condition (15), and the momen- 
tum condition (16) for all possible wave functions is the operator of the 
SchrSdinger-Langevin equation (6) 

K(r = (hy/2i) ln(r162162 (17) 

Substituting (17) into (14) with 

H = - (h2/2m)(~210x2) + V(x)  (18) 
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we obtain 

d ( E )  7 h 2 f  {Oz[r 1n(r162 (~.,) ~2~b\ 
dt - 4m r In dx (19) ax 2 ax~j 

Integrating by parts gives us 

__d(E)dt = rh2 lOin(C/C*) ( 4 m  ~x r ~r - r Or dx (20) 

which can be written in the form 

d(E)dt - 7h=4m f ]  r O ln(r162 "dx (21) 

Therefore the energy dissipation operator (17) satisfies the energy dissipation 
condition (14). The special case of d(E) /d t  = 0 arises when the quantum 
system is in a pure state with a wave function of the form 

r t) = [exp(- iE,  t/h)]u,(x) 

where E~ is the energy eigenvalue of the nth state and u,(x) is real. However, 
it should be noted that the stochastic potential Vs will cause the pure state to 
change to a mixed state, in which state the energy dissipation operator then 
tends to decrease the energy. 

Next, by substituting (17) into (15) and (16), we readily confirm that the 
energy dissipation operator of the SchrSdinger-Langevin equation also 
satisfies the normalization and momentum conditions. 

3. D I S S I P A T I O N  O P E R A T O R S  

It is our aim to derive other forms of K(r which satisfy the energy dissi- 
pation, momentum, and normalization conditions. Let us consider expres- 
sions of the type 

K(r = Eg(O)~ (22) 

where e is a coupling constant and g(O) is a real function of the real variable 0: 

0 = (1/2i) ln(~b/~b*) (23) 

For example, the operator (17) of  the SchrSdinger-Langevin equation is a 
member of this class with e = hy and g(O) = O. 

Substituting (22) into (14) and integrating by parts, we have 

d ( E )  he f dg90~ , ~r ~r dx 
dt - 2im ~!-dO-~x \ r -~x - r ~x ] 

(24) 
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Noting that 

Ox 2i \~b 8x ~b* 8x ] (25) 

we find that (24) becomes 

d< E >/dt = - (h~lm) y g'(O) lr O/axl s dx (26) 

A similar result can be derived for higher dimensional problems. We obtain 

d ( E ) / d t  = - (he lm)  f g'(O)]@l 2 VO-VO dr (27) 

Therefore, if the first derivative of g is positive, then the energy dissipation 
condition (14) is satisfied. By substituting (22) into (15) and (16), we confirm 
that (22) also satisfies the normalization and momentum conditions. Thus we 
have shown that any expression of  the form (22) where the first derivative of 
g is positive leads to frictional or dissipative effects where the quantum 
system tends to lose energy. 

Are there other general expressions for K(~b) which produce frictional or 
dissipative effects ? Let us investigate expressions of the form 

K(~b) = KT(t)S(x,  t)~b (28) 

where K is a coupling constant, T is a real function of time, and S is a real 
function of  space and time. Is there any relationship between S and T so that 
the energy dissipation condition (14) is satisfied? Combining (28) with (14) 
and integrating by parts yields 

d<e> hKr(t) ( (  a4~ o4~*~ as dx 
dt ~,m J ~b* - (29) - - -  7x ~ ~x l Tx 

Making use of the expression for the probability current density j, we find that 
(29) simplifies to 

d ( E ) / d t  = - KT(t) f y(aS/Ox) dx (30) 

where 

J = 2 t ~  r - 4~ax ! (31) 
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Thus, according to (30), if we take for T(t) 

T(t) = f j(~S/gx) dx (32) 

then K(~b) of (28) will satisfy the energy dissipation condition (14). It is easily 
confirmed that (28) also satisfies the normalization condition (15) and the 
momentum condition (16). 

The energy dissipation operator (28) for one spatial dimension can be 
generalized to treat higher dimensional problems. We consider expressions 
of the form 

K(~b) = KT(t).S(r, t)~b (33) 

where T and S are now vector functions. Substituting (33) into (14) and 
integrating by parts gives us 

d(E) /d t  = - KT(t). ( ( j .  V)S(r, t) dr (34) 
d 

where 

j = (h/2im)(~b* V~b - ~b V~b*) (35) 

Therefore the energy dissipation condition (14) is satisfied by taking for the 
vector function T(t) 

f (j. V)S(r, t) dr (36) T(t) 

For example, if we let the vector function S(r, t) be equal to r, 

S(r, t) = r (37) 

then the energy dissipation operator (33) becomes 

where 

K(r = Kr.j~ (38) 

g 
j = J j  dr = (p)/m (39) 

It is not difficult to show that the Schr6dinger equation 

ih O~blOt = H~b + Vs~b + K(~b) (40) 

with the energy dissipation operator (38) satisfies the Langevin equation 

d(P) /d t  = (F)  + (Fs) - (K/m)(p) (41) 

In summary, we have studied quantum systems where friction or other 
dissipative effects occur. The energy dissipation, normalization, and momen- 
tum conditions for such systems have been discussed. General expressions 
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have been derived for the energy dissipator operator of the Schr6dinger 
equation which satisfy these conditions for all possible Wave functions. 
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